1

Mark schemes

Q1.

(a) Electrophilic substitution both words needed
 Allow minor spelling errors e.g. electrophillic or subsitution
 Ignore nitration

M1 for structure

M1 for structure of ion including 2 charges (+ on N must be correct in both cases if drawn twice)
M2 for 3 arrows and Ip on O - may be scored in two steps Ignore use of RNH₂ to remove H⁺ in M2, but penalise use of CI-

(d) Corrosive **OR** forms strong acid/HCl (fumes) **OR** vulnerable to hydrolysis **OR** dangerous (to use)

Allow anhydride is less corrosive **OR** does not form strong acid fumes **OR** less vulnerable to hydrolysis **OR** ethanoyl chloride is more expensive Allow reacts violently / extremely exothermic / extremely vigorous Ignore toxic / harmful / hazardous

1

2

(e)

1

M1

M2

M3

- (f) + CH₃COONH₄ + 2H₂O Allow CH₃COO⁻ / CH₃CO₂⁻ and NH₄⁺ Allow NH₄CH₃COO
- (g) Via moles

M1 M_r paracetamol = 151(.0)

M2 Amount paracetamol = 250 × 10³ / 151.0 = 1655.6 mol OR (250 × 10³) / M1

(= amount hydroquinone used)

M3 Mass hydroquinone = 1655.6 × 110.0 = 182119 g = 182 kg OR correct answer to M2 × 110.0 / 1000

> OR via mass $M1 M_r$ paracetamol = 151(.0) So 110 g hydroquinone forms 151 g paracetamol M2 Mass hydroquinone needed 250 × 110 / 151.0 OR 250 × 110 / M1 = 182 kg

Min 2sf If Mr values used wrong way round can score **M2**

[10]

Q2. C

[1]

Q3.

This question is marked using Levels of Response. Refer to the

Mark Scheme Instructions for Examiners for guidance on how to mark this question.	
	All stages are covered and the explanation of each stage is generally correct and virtually complete.
Level 3 5-6 marks	Answer communicates the whole process coherently and shows a logical progression from stage 1 and stage 2 to stage 3.
	Completely correct use of sign and language in Stage 3.
Level 2 3-4 marks	All stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR two stages are covered and the explanations are generally correct and virtually complete.
	Answer is mainly coherent and shows a progression through the stages. Some steps in each stage may be incomplete.
	Some errors in use of sign and language in Stage 3.
Level 1 1-2	Two stages are covered but the explanation of each stage may be incomplete or may contain inaccuracies OR only one stage is covered but the explanation is generally correct and virtually complete.
marks	Answer includes some isolated statements but these are not presented in a logical order or show confused reasoning.
Level 0 0 marks	Insufficient correct chemistry to gain a mark.

Indicative chemistry content

Stage 1 Bonding

1a) Each C has three (covalent) bonds

- 1b) Spare electrons (in a p orbital) overlap (to form a π cloud)
- 1c) delocalisation

Stage 2 Shape

2a) Planar

2b) Hexagon/6 carbon ring/120° bond angle

2c) C–C bonds equal in length / C–C bond lengths between single and double bond

Stage 3 Stability

3a) Expected ΔH^0 hydrogenation of cyclohexatriene = -360 kJ mol⁻¹

- 3b) ΔH° hydrogenation benzene (is less exothermic) by 152 kJ mol⁻¹
- 3c) Benzene lower in energy than cyclohexatriene / Benzene is more stable

6

(b) Value within range –239 to –121

[1]

1

1

3

If outside range including positive values CE=0

Double bonds separated by one single bond / alternating (or shown in structure)

The wording 'close enough to allow delocalisation'
would score M2 and M3

Allows some delocalisation/overlap of p orbitals
Ignore reference to hydration here

[9]

Α

Q4.

Q5.

- (a) $HNO_3 + 2H_2SO_4 \rightarrow NO_{2^+} + H_3O^+ + 2HSO_4^-$ Allow $H_2SO_4 + HNO_3 \rightarrow NO_{2^+} + HSO_4^- + H_2O$ Allow a combination of equations which produce NO_{2^+} Penalise equations which produce $SO_4^{2^-}$
- (b) Electrophilic substitution. Ignore nitration

OR Kekule

1

1

1

M1 Arrow from inside hexagon to N or + on N (Allow NO_{2^+})

M2 Structure of intermediate

- horseshoe centred on C1 and must not extend beyond C2 and C6, but can be smaller
- + in intermediate not too close to C1 (allow on or "below" a line from C2 to C6)

M3 Arrow from bond into hexagon (Unless Kekule)

- Allow M3 arrow independent of M2 structure
- + on H in intermediate loses M2 not M3
- (c) D
- (d) (Balance between) solubility in moving phase and retention by stationary phase

OR (relative) affinity for stationary / solid and mobile / liquid / solvent (phase)

- (e) Solvent depth must be below start line Ignore safety
- (f) 1,2- is more polar **OR** 1,4- is less polar **OR** 1,2 is polar, 1,4- is non-polar

1,4- (or Less/non polar is) less attracted to (polar) plate / stationary phase / solid **OR** (Less/non polar is) more attracted to / more soluble in (non-polar)

OR (Less/non polar is) more attracted to / more soluble in (non-polar) solvent / mobile phase / hexane

M2 dependent on correct M1 If M1 is blank then read explanation for possible M1 and M2 Allow converse argument for 1,2

- (g) No CE = 0
 - Yes mark on but there is **NO MARK FOR YES** Mark independently following yes

Solvent (more) polar or ethyl ethanoate is polar

1

1

4

1

1

Polar isomer more attracted to / more soluble in / stronger affinity to the solvent (than before) Penalise bonded to mobile phase in M2

[12]

Q6.

А

[1]

Q7.

(a) (nucleophilic) addition-elimination Not electrophilic addition-elimination

M4 for 3 arrows and Ip

Allow C_6H_5 or benzene ring Allow attack by : $NH_2C_6H_5$ M2 not allowed independent of M1, but allow M1 for correct attack on C+ M3 for correct structure <u>with charges</u> but lone pair on O is part of M4 M4 (for three arrows and lone pair) can be shown in more than one structure

(b) The minimum quantity of hot water was used:

To ensure the hot solution would be saturated / crystals would form on cooling

The flask was left to cool before crystals were filtered off:

Yield lower if warm / solubility higher if warm

The crystals were compressed in the funnel:

1

1

1

1

1

Air passes through the sample not just round it Allow better drying but not water squeezed out

A little cold water was poured through the crystals:

To wash away soluble impurities

(c) Water Do not allow unreacted reagents

Press the sample of crystals between filter papers Allow give the sample time to dry in air

(d) $M_{\rm r}$ product = 135.0

Expected mass =
$$5.05 \times \frac{135.0}{93.0} = 7.33 \text{ g}$$

Percentage yield = $\frac{\frac{4.82}{7.33}}{\times} \times 100 = 65.75 = 65.8(\%)$

Answer must be given to this precision

(e)

OR

$$\begin{array}{ccc} C_{6}H_{5}NHCOCH_{3}+NO_{2}^{+} & \rightarrow & C_{6}H_{4}(NHCOCH_{3})NO_{2}+H^{+} \\ (f) & Electrophilic substitution \\ (g) & Hydrolysis \\ (h) & Sn / HCI \end{array}$$

1

[18]